问题描述:
有15盏灯,要求关掉6盏,且相邻的灯不能关掉,两端的灯不能关掉,则不同的关灯方法有多少种?
最佳答案:
解法一:
将9盏灯排成一排,从9盏亮灯之间8个空隙中选择6个空隙,将关掉的6盏灯插入,有C68==8*7/(1*2)=28种方法。
解法二:
设×表示关灯,√表示开灯,则本问题可转化为
在√×√×√×√×√×√×√中的√处插入2个√,有几种插法?
1)2个√插入同一√处,一共有C(7,1)=7种。
2)2个√插入不同的√处,一共有C(7,2)=21种。
只有以上两种插法,故一共有7+21=28种插法。
所以,有15盏灯,首尾两盏不能关,相邻两盏不能关,关掉6盏,一共有28种方法。
??